Abstract

In reconfigurable intelligent surface (RIS)-assisted systems, the optimization of the phase shifts requires separate acquisition of the channel state information (CSI) for the direct and RIS-assisted channels, posing significant design challenges. In this paper, a novel scheme is proposed, which considers practical limitations like pilot overhead and channel estimation (CE) errors to increase the net performance. More specifically, at the cost of unpredictable interference, a portion of the CSI for the RIS-assisted channels is sacrificed in order to reduce the CE time. By alternating the CSI between coherence blocks and employing rate splitting, it becomes possible to mitigate the interference, thereby compensating the adverse effect of the sacrificed CSI. Numerical simulations validate that the proposed scheme exhibits better performance in terms of achievable net rate, resulting in gains of up to 160% compared non-orthogonal multiple access (NOMA), when CE time and CE errors are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.