Abstract
Three-dimensional nanofibrous scaffolds that morphologically mimic natural extracellular matrices hold great promises in tissue engineering and regenerative medicine due to their increased cell attachment and differentiation compared with block structure. In this work, for the first time, three-dimensional porous nanofibrous 58S bioglass scaffolds have been fabricated using a sacrificial template method. During the process, a natural three-dimensional nanofibrous bacterial cellulose was used as the sacrificial template on which precursor 58S glass was deposited via a sol-gel route. SEM and TEM results verify that the as-prepared 58S scaffolds can inherit the three-dimensional nanofibrous feature of bacterial cellulose. Pore structure characterizations by nitrogen adsorption-desorption and mercury intrusion porosimetry demonstrate that the 58S scaffolds are highly porous with a porosity of 75.1% and contain both mesopores (39.4 nm) and macropores (60 µm) as well as large BET surface area (127.4 m2 g-1). Invitro cell studies suggest that the 58S scaffold is bioactive and biocompatible with primary mouse osteoblast cells, suggesting that the nanofibrous structure of 58S is able to provide an appropriate environment for cellular functioning. These results strongly suggest that the three-dimensional nanofibrous 58S scaffold has great potential for application in bone tissue engineering and regenerative medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.