Abstract

Crystalline FeAlO3/FeAl2O4 nanonets were synthesized by a modified template-assisted approach using anodic aluminum oxide (AAO) as a reactive and sacrificial template to direct and promote interfacial reaction growth (IRG). The as-prepared nanonets replicate the morphology of the porous AAO template and contain mixed FeAlO3 and FeAl2O4. To extend the applicability of the sacrificial-template-assisted IRG approach, porous anodic titanium oxide (ATO) was used as template in place of AAO, giving rise to Zn2TiO4 nanonet/nanotube and PbTiO3 nanonet/nanotube. These latter products are polycrystalline due to the polycrystalline nature of the ATO template. Growth mechanism for the formation of the Zn2TiO4 and PbTiO3 nanostructures is proposed. The present study shows that the IRG approach can be extended to fabricate patterned complex oxide nanomaterials that may find applications in a wide range of nanotechnologies such as electronics, photonics and spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.