Abstract

Bifunctional catalyst materials development for energy storage and conversion technologies is notoriously demanding in terms of electrochemistry (low stability, sluggish kinetics and high total overpotential (∆E)) and logistics (environmental safety, production methodologies and cost).Noble metal electrocatalysts are proven to be good bifunctional catalysts and as a result are being used as benchmark catalysts. However, the environmental and economic sustainability is severely compromised due to the scarcity of these metals. The alternative option is based on first-row transition metal heteroatom-doped carbon materials. Low cost, high availability, great electrocatalytic activity and stability promise to be a suitable noble metal free catalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR).This work showcases a high performance Fe-N-C type material with sustainable synthesis and efficient activity towards ORR and OER. Unlike various classical methods for electrocatalyst synthesis, the developed methodology combines mechanochemistry and application of sacrificial template, which yields materials with superior bifunctional oxygen electrocatalytic performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call