Abstract

A dimensionless measure of otolith mass asymmetry, χ, was calculated as the difference between the masses of the right and left paired otoliths divided by average otolith mass. Saccular otolith mass asymmetry was studied in eight flatfish species (110 otolith pairs) and compared with data from a previously published study on roundfishes. As in the case of symmetrical fishes, the absolute value of χin flatfishes does not depend on fish length and otolith growth rate, although otolith mass and the absolute value of otolith mass difference are correlated with fish length. The values of χwere between −0·2 and +0·2 in 96·4% of flatfishes studied. The mean ±s.e. value of χin flatfishes was significantly larger than in standard bilaterally symmetrical marine fishes (‘roundfishes’), respectively 0·070 ± 0·006 and 0·040 ± 0·006. The most prominent distinction is the existence of downside prevalence of saccular otolith mass in flatfishes, which contrasts with no right–left prevalence in roundfishes found in a previous study. In the right‐eyed flatfishes (Soleidae), the left saccular otoliths are heavier than the right otoliths. In the left‐eyed flatfishes (Bothidae and Citharidae), the right saccular otoliths are heavier than the left otoliths. Not all flatfishes, however, fit in this design: 11·8% of flatfishes studied had the heavier saccular otoliths in the upside labyrinth and 5·4% of flatfishes had no otolith mass asymmetry (within the accuracy of the analysis). At the same time, the more mobile flatfishes (bothids and citharids) have more symmetrical and, hence, more precisely organized saccular otolith organs than the bottom‐associated flatfishes (soleids). It is possible to assume that the value of the otolith asymmetry is not only correlated with flatfish placement in a particular family, or position of eyes, but also may correlate with general aspects of their ecology. Mathematical modelling indicated that for most flatfishes one‐side saccular prevalence had no substantial significance for sound processing. On the other hand, calculations showed that 49% of flatfishes (but only 14·5% of roundfishes) have |χ| which exceed the critical level and, in principle, could sense the difference between the static displacement of the large and small paired otoliths. At that, the number of the soleids that could sense this difference is greater than the number of the bothids and citharids, 84 and 27%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.