Abstract

Rice straw polysaccharides are one of the major C sources for CH4 formation in anoxic rice paddy soils. We investigated the initial step of straw degradation by measuring the substrate-saturated activities of the polysaccharolytic enzymes β-glucosidase, exo-β-1,4-glucanase and xylosidase using substrates labelled with methylumbelliferone (MUF). The actual activity of the enzymes was measured by the release of reducing sugars after the inhibition of microbial carbohydrate uptake by toluene. The substrate-saturated enzyme activities increased during the first 11 days of incubation, while the actual activities decreased, presumably due to the decreasing access of straw polysaccharides to hydrolytic enzymes. The temporal progress of polysaccharide hydrolysis, transient accumulation of fermentation products and CH4 production indicated five distinct phases. In phase I ( day 18), the methanogenic degradation of straw reached a quasi-steady state, when polysaccharide hydrolysis became the rate-limiting step for CH4 formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call