Abstract

New insight into the importance of carbohydrates in biological systems underscores the need for rapid synthetic and screening procedures for them. Development of an organic synthesis-compatible linker that would attach saccharides to microtiter plates was therefore undertaken to facilitate research in glycobiology. Galactosyllipids containing small, hydrophobic groups at the anomeric position were screened for noncovalent binding to microtiter plates. When the lipid component was a saturated hydrocarbon between 13 and 15 carbons in length, the monosaccharide showed complete retention after aqueous washing and could be utilized in biological assays. This alkyl chain was also successfully employed with more complex oligosaccharides in biological assays. In light of these findings, this method of attachment of oligosaccharides to microtiter plates should be highly efficacious to high-throughput synthesis and analyses of carbohydrates in biological assays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call