Abstract

Autoradiographic and axonal degeneration techniques were employed to determine the distribution patterns of inferior olivary afferents whose origins were determined using the horseradish peroxidase method.70 The Fink-Heimer stain for degenerating axons was used following lesions of the cerebral cortex and spinal cord, while brainstem and cerebellar afferents were mapped by tritiated leucine autoradiography.After unilateral lesions of the mid-thoracic spinal cord, degenerating axons were observed within the subnuclei a and b of the caudolateral medial accessory olive and in the caudolateral dorsal accessory olive. Degeneration after upper cervical cord lesions extended more rostrally and medially within the same olivary subdivisions.Several nuclei within the caudal brainstem projected to the inferior olivary complex. The dorsal column nuclei distributed fibers primarily contralaterally to the lateral part of the dorsal accessory olive and to the caudolateral part of the medial accessory olive; the spinal trigeminal nucleus projected contralaterally to the rostromedial dorsal accessory olive; the medial and inferior vestibular nuclei projected to the ipsilateral subnuclei b, c, and β of the medial accessory olive and to the contralateral dorsomedial cell column; the nucleus prepositus hypoglossi sent fibers to the subnuclei c and β, the dorsal cap and the ventrolateral outgrowth; the lateral reticular nucleus projected to the subnucleus a of the caudolateral medial accessory olive bilaterally; and the reticular formation distributed fibers to the dorsal accessory olive contralaterally and to the β subnucleus ipsilaterally.Study of inferior olivary complex afferents from the deep cerebellar nuclei showed a projection from the fastigial nucleus to the β subnucleus and the ventrolateral outgrowth. The dentate and interpositus nuclei demonstrated topographic connections from these nuclei to the principal olive and accessory olives, respectively. All cerebellar connections were predominantly contralateral.Analysis of mesencephalic and diencephalic areas also demonstrated several inferior olivary complex afferent systems: the caudal pretectum and the superior colliculus projected to the subnucleus c contralaterally and the dorsal lamella of the principal olive ipsilaterally; the nucleus of the optic tract sent fibers to the dorsal cap; the lateral deep mesencephalic nucleus distributed fibers to the ipsilateral dorsal accessory olive and β subnucleus; the medial terminal nucleus of the accessory optic tract projected ipsilaterally to the ventrolateral outgrowth; and several areas including the medial deep mesencephalic nucleus, periaqueductal gray, the nucleus of Darkschewitsch, the subparafascicular nucleus, the rostral red nucleus and the prerubral field all projected ipsilaterally to the principal olive, rostral medial accessory olive, ventrolateral outgrowth and, to a lesser extent, the caudal medial accessory olive, dorsal cap and β subnucleus.Lesions of the frontal cortex produced axonal degeneration primarily ipsilaterally within many olivary subdivisions, especially the medial dorsal accessory olive and the caudomedial medial accessory olive.Although some notable differences in the distribution and laterality of fibers are described, our findings generally corroborate several earlier reports which used different techniques on a variety of species. Inferior olivary afferents from functionally related areas typically demonstrated similar distribution patterns within the subdivisions of the inferior olivary complex. These patterns suggest a functional localization within the inferior olivary complex which may facilitate an understanding of afferents from areas whose functions are not clearly known.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call