Abstract

Under natural circumstances, saccade-vergence eye movements are among the most frequently occurring. This study examines the properties of such movements focusing on short-term repetition effects. Are such movements robust over time or are they subject to tiredness? 12 healthy adults performed convergent and divergent combined eye movements either in a gap task (i.e., 200 ms between the end of the fixation stimulus and the beginning of the target stimulus) or in an overlap task (i.e., the peripheral target begins 200 ms before the end of the fixation stimulus). Latencies were shorter in the gap task than in the overlap task for both saccade and vergence components. Repetition had no effect on latency, which is a novel result. In both tasks, saccades were initiated later and executed faster (mean and peak velocities) than the vergence component. The mean and peak velocities of both components decreased over trials in the gap task but remained constant in the overlap task. This result is also novel and has some clinical implications. Another novel result concerns the accuracy of the saccade component that was better in the gap than in the overlap task. The accuracy also decreased over trials in the gap task but remained constant in the overlap task. The major result of this study is that under a controlled mode of initiation (overlap task) properties of combined eye movements are more stable than under automatic triggering (gap task). These results are discussed in terms of saccade-vergence interactions, convergence-divergence specificities and repetition versus adaptation protocols.

Highlights

  • Gaze redirection in three-dimensional space is most frequently based on combination of saccades and vergence

  • QUALITATIVE INSPECTION OF THE DATA As indicated in Table 1, a large percentage of the anticipatory movements occurred in the gap task for both divergent (29%) and convergent (15%) movements; anticipatory movements in the overlap task were comparatively few in number making up only 3 and 5% of the convergent and divergent movements, respectively

  • Corrective and/or main saccades perturbed the vergence smoothness in almost half of the divergent movements while smoothness of vergence was preserved in the large majority of convergent movements, in either gap or overlap tasks

Read more

Summary

Introduction

Gaze redirection in three-dimensional space is most frequently based on combination of saccades and vergence. The orthoptic rehabilitation of deficits and weaknesses in vergence usually consists in the repetition of isolated vergence along the median plane (Lavrich, 2010). This standard procedure has been shown to improve ocular motor performance by decreasing the latency (Bucci et al, 2004a) and duration (Jainta et al, 2011) of eye movements, on the one hand, and increasing the accuracy (Van Leeuwen et al, 1999; Bucci et al, 2004b) and velocity (Jainta et al, 2011) of eye movements, on the other

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call