Abstract

The superior colliculus (SC) receives a retinotopic projection of the contralateral visual field in which the representation of the central field is expanded with respect to the peripheral field. The visual projection forms a nonlinear, approximately logarithmic, map on the SC. Models of the SC commonly assume that the function defining the strength of neuronal connections within this map (the kernel) depends only on the distance between two neurons, and is thus isotropic and homogeneous. However, if the connection strength is based on the distance between two stimuli in sensory space, the kernel will be asymmetric because of the nonlinear projection onto the brain map. We show, using a model of the SC, that one consequence of these asymmetric intrinsic connections is that activity initiated at one point spreads across the map. We compare this simulated spread with the spread observed experimentally around the time of saccadic eye movements with respect to direction of spread, differing effects of local and global inhibition, and the consequences of localized inactivation on the SC map. Early studies suggested that the SC spread was caused by feedback of eye displacement during a saccade, but subsequent studies were inconsistent with this feedback hypothesis. In our new model, the spread is autonomous, resulting from intrinsic connections within the SC, and thus does not depend on eye movement feedback. Other sensory maps in the brain (e.g., visual cortex) are also nonlinear and our analysis suggests that the consequences of asymmetric connections in those areas should be considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call