Abstract

A spectral amplitude coded-optical code division multiplexing time division multiplexing (SAC-OCDM/TDM) passive optical network (PON) for upgrading the traditional TDM PON is proposed. To the best of our knowledge, our work is the first to report on the use of both spectral and orthogonal code domains, which are transparent to optical network unit (ONU) for hybrid PON, in order to upgrade TDM PON seamlessly. The fewer encoder/decoders and cheaper optical source under the conditions of high bite rate and large ONU accommodation make the system cost-effective. A downstream experiment is demonstrated, and the results demonstrate that the proposed system is feasible.

Highlights

  • A spectral amplitude coded-optical code division multiplexing time division multiplexing (SACOCDM/TDM) passive optical network (PON) for upgrading the traditional TDM PON is proposed

  • To the best of our knowledge, our work is the first to report on the use of both spectral and orthogonal code domains, which are transparent to optical network unit (ONU) for hybrid PON, in order to upgrade TDM PON seamlessly

  • The time division multiplexing (TDM) technique is used in the Ethernet passive optical network (EPON) and Gigabit passive optical network (GPON), which is currently used commercially and performs optimally

Read more

Summary

Introduction

A spectral amplitude coded-optical code division multiplexing time division multiplexing (SACOCDM/TDM) passive optical network (PON) for upgrading the traditional TDM PON is proposed. To the best of our knowledge, our work is the first to report on the use of both spectral and orthogonal code domains, which are transparent to optical network unit (ONU) for hybrid PON, in order to upgrade TDM PON seamlessly. A full duplex 10G-TDM-OCDM-PON system using only a pair of encoder/decoder was proposed[6].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.