Abstract

Serum amyloid A1 (SAA1), an inflammation-related molecule, is associated with the malignant progression of many tumors. This study aimed to investigate the role of SAA1 in the progression of esophageal squamous cell carcinoma (ESCC) and its molecular mechanisms. The expression of SAA1 in ESCC tissues and cell lines was analyzed using bioinformatics analysis, western blotting, and reverse transcription-quantitative PCR (RT‒qPCR). SAA1-overexpressing or SAA1-knockdown ESCC cells were used to assess the effects of SAA1 on the proliferation, migration, apoptosis of cancer cells and the growth of xenograft tumors in nude mice. Western blotting, immunofluorescence and RT‒qPCR were used to investigate the relationship between SAA1 and β-catenin and SAA1 and sphingosine 1-phosphate (S1P)/sphingosine 1-phosphate receptor 1 (S1PR1). SAA1 was highly expressed in ESCC tissues and cell lines. Overexpression of SAA1 significantly promoted the proliferation, migration and the growth of tumors in nude mice. Knockdown of SAA1 had the opposite effects and promoted the apoptosis of ESCC cells. Moreover, SAA1 overexpression promoted the phosphorylation of β-catenin at Ser675 and increased the expression levels of the β-catenin target genes MYC and MMP9. Knockdown of SAA1 had the opposite effects. S1P/S1PR1 upregulated SAA1 expression and β-catenin phosphorylation at Ser675 in ESCC cells. In conclusion, SAA1 promotes the progression of ESCC by increasing β-catenin phosphorylation at Ser675, and the S1P/S1PR1 pathway plays an important role in its upstream regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call