Abstract

High-resolution (HR) remote sensing images have important applications in many scenarios, and improving the resolution of remote sensing images via algorithms is one of the key research fields. However, current super-resolution (SR) algorithms, which are trained on synthetic datasets, tend to have poor performance in real-world low-resolution (LR) images. Moreover, due to the inherent complexity of real-world remote sensing images, current models are prone to color distortion, blurred edges, and unrealistic artifacts. To address these issues, real-SR datasets using the Gao Fen (GF) satellite images at different spatial resolutions have been established to simulate real degradation situations; moreover, a second-order attention generator adversarial attention network (SA-GAN) model based on real-world remote sensing images is proposed to implement the SR task. In the generator network, a second-order channel attention mechanism and a region-level non-local module are used to fully utilize the a priori information in low-resolution (LR) images, as well as adopting region-aware loss to suppress artifact generation. Experiments on test data demonstrate that the model delivers good performance for quantitative metrics, and the visual quality outperforms that of previous approaches. The Frechet inception distance score (FID) and the learned perceptual image patch similarity (LPIPS) value using the proposed method are improved by 17.67% and 6.61%, respectively. Migration experiments in real scenarios also demonstrate the effectiveness and robustness of the method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call