Abstract
The region of the Escherichia coli 16 S ribosomal RNA recognized by the ribosomal protein S4 has been defined by assaying a set of 13 16 S rRNA fragments for S4 binding. The fragments were prepared by transcription in vitro, and binding constants were measured in three ways: retention of labeled RNA fragments on nitrocellulose filters by S4; cosedimentation of labeled S4 with RNA fragments in sucrose gradients; and the distribution of labeled S4 between two RNAs of different sizes in a sucrose gradient. All three methods gave similar relative binding strengths for a variety of 16 S rRNA and non-specific (23 S rRNA) sequences, with the exception of two of the largest 16 S rRNA fragments; these gave smaller association constants in the filter retention assay than in the other methods. We found that specific complexes of S4 with these larger RNAs do not bind well to filters, leaving non-specific complexes to dominate the assay. Specific complexes with RNAs ≤ 891 nucleotides were retained efficiently by S4 on filters, and gave reliable binding constants. All 16 S rRNA fragments containing nucleotides 39 to 500 bound S4 with the same affinity as intact 16 S rRNA, while all fragments with endpoints within 39 to 500 bound at least tenfold more weakly. This sequence must be able to fold independently of the rest of the rRNA. Comparison of this minimal 462-nucleotide S4 binding site with S4 footprinting results suggests that S4 binding might alter the conformations of RNA neighboring the 39 to 500 region in the intact 16 S rRNA. Specific S4-rRNA binding is not sensitive to KCl concentration, but a more normal salt dependence is seen in K 2SO 4 ( ∂ logK ∂ log[K +] ≈ − 3.3). This duplicates the behavior of the specific S4-α mRNA translational repression complex, arguing that S4 recognizes both the mRNA and rRNA substrates by the same mechanism. Mg 2+ is not required to form the specific rRNA complex, at least under conditions which stabilize RNA structure (0.35 m-KCl, 5 °C).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Molecular Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.