Abstract

Routing protocols for large wireless networks must address the challenges of reliable packet delivery at increasingly large scales and with highly limited resources. Attempts to reduce routing state can result in undesirable worst-case routing performance, as measured by stretch, which is the ratio of the hop count of the selected path to that of the optimal path. We present a new routing protocol, Small State and Small Stretch (S4), which jointly minimizes the state and stretch. S4 uses a combination of beacon distance-vector-based global routing state and scoped distance-vector-based local routing state to achieve a worst-case stretch of 3 using <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">O</i> (√( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N)</i> ) routing state per node in an <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N</i> -node network. Its average routing stretch is close to 1. S4 further incorporates local failure recovery to achieve resilience to dynamic topology changes. We use multiple simulation environments to assess performance claims at scale and use experiments in a 42-node wireless sensor network testbed to evaluate performance under realistic RF and failure dynamics. The results show that S4 achieves scalability, efficiency, and resilience in a wide range of scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.