Abstract
Proteins are major targets for oxidative damage in vivo due to their high abundance and rapid rates of reaction with both one-electron (radical) and two-electron oxidants (e.g. singlet oxygen, hypochlorous acid, peroxynitrous acid, reactive aldehydes). The turnover of both native and modified proteins is critical for maintenance of cell homeostasis, with this occurring via multiple pathways including proteasomes (for cytosolic species), the Lon protease (in mitochondria), and the endo-lysosomal systems (both extra- and intra-cellular species). Evidence has been presented for both enhanced and diminished rates of catabolism of modified proteins, as well as altered turnover of native (unmodified) proteins as a result of damage to these systems, potentially as a result of the accumulation of damaged proteins. In recent studies we have shown that long-lived reactive species forms on proteins (hydroperoxides, chloramines and aldehydes) can modify the activity of proteasomal and lysosomal enzymes. Some of the above species are efficient inhibitors of the tryptic and chymotryptic activities of the 26S proteasome, as well as lysosomal cathepsin and acid lipase activities. These are key species in the turnover of both proteins and lipoproteins. The loss of enzyme activity is accompanied in many cases, by oxidation of critical thiol residues via molecular reactions. For reactive aldehydes (either free or protein-bound) direct enzyme inhibition can occur as well as modulation of protein levels and, in the case of lysosomes, changes in lysosomal numbers. Overall, these data indicate that the formation of reactive species on proteins can modulate cell function by multiple pathways including interference with the turnover of native proteins (including critical cell signalling molecules) and alterations in the rate of clearance of modified proteins. Both pathways may contribute to the development of a number of human pathologies associated with oxidative damage.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.