Abstract

We impose an S3 symmetry on the quark fields under which two of three quarks transform like a doublet and the remaining one as singlet, and use a scalar sector with the same structure of SU(2) doublets. After gauge symmetry breaking, a Z2 subgroup of the S3 remains unbroken. We show that this unbroken subgroup can explain the approximate block structure of the CKM matrix. By allowing soft breaking of the S3 symmetry in the scalar sector, we show that one can generate the small elements, of quadratic or higher order in the Wolfenstein parametrization of the CKM matrix. We also predict the existence of exotic new scalars, with unconventional decay properties, which can be used to test our model experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.