Abstract

Many existing attention-based deep learning approaches to sentiment analysis have focused on words and represent an entire review text as a word sequence. However, these approaches overlook the differences in the importance of each sentence to the complete text. To solve this problem, some work has been performed to calculate sentence-level attention, but these studies use the same approach that is applied to word-level attention, which leads to unnecessary sequential structures and increased complexity of sentence representation. Therefore, in this paper, we propose a sentence-to-sentence attention network11https://github.com/JingruiHou/S2SAN (S2SAN) using multihead self-attention. We conducted several domain-specific, cross-domain and multidomain sentiment analysis experiments with real-world datasets. The experimental results show that S2SAN outperforms other state-of-the-art models. Some classical sentiment classifiers [e.g., convolutional neural network (CNN), recurrent neural network (RNN), and long short-term memory (LSTM) models] achieve better accuracies when they are reconfigured to include sentence-to-sentence attention.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.