Abstract
Semantic-aware spatial keyword search is an important technique for digital map services. However, existing indexing and search methods have limited pruning effect due to the high dimensionality in semantic space, causing query efficiency to be a serious issue. To handle this problem, this paper proposes a novel pivot-based hierarchical indexing structure S2R-tree to integrate spatial and semantic information in a seamless way. Instead of indexing objects in the original semantic space, we carefully design a space mechanism to transform the high dimensional semantic vectors to a low dimensional space, so that more effective pruning effect can be achieved. On top of the S2R-tree, an efficient query processing algorithm is further designed, which not only ensures efficient query processing by a set of theoretical bounds, but also returns accurate results despite of the indexing in the low dimensional space. Furthermore, we conduct extensive experiments to evaluate and compare our proposed and baseline methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.