Abstract
Susceptibility weighted imaging (SWI) is a routine magnetic resonance imaging (MRI) sequence that combines the magnitude and high-pass filtered phase images to qualitatively enhance the image contrasts related to tissue susceptibility. Tremendous amounts of the high-pass filtered phase data with low signal to noise ratio and incomplete background field removal have thus been collected under default clinical settings. Since SWI cannot quantitatively estimate the susceptibility, it is thus non-trivial to derive quantitative susceptibility mapping (QSM) directly from these redundant phase data, which effectively promotes the mining of the SWI data collected previously. To this end, a novel deep learning based SWI-to-QSM-Net (S2Q-Net) is proposed for QSM reconstruction from SWI high-pass filtered phase data. S2Q-Net firstly estimates the edge maps of QSM to integrate edge prior into features, which benefits the network to reconstruct QSM with realistic and clear tissue boundaries. Furthermore, a novel Second-order Cross Dense Block is proposed in S2Q-Net, which can capture rich inter-region interactions to provide more non-local phase information related to local tissue susceptibility. Experimental results on both simulated and in-vivo data indicate its superiority over all the compared deep learning based QSM reconstruction methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.