Abstract

Image Scanning Microscopy (ISM) enables good signal-to-noise ratio (SNR), super-resolution and high information content imaging by leveraging array detection in a laser-scanning architecture. However, the SNR is still limited by the size of the detector, which is conventionally small to avoid collecting out-of-focus light. Nonetheless, the ISM dataset inherently contains the axial information of the fluorescence emitters. We leverage this knowledge to achieve computational optical sectioning without sacrificing the conventional benefits of ISM. We invert the physical model to fuse the raw dataset into a single image with improved sampling, SNR. lateral resolution, and optical sectioning. We provide a complete theoretical framework and validate our approach with experimental images of biological samples acquired with a custom setup equipped with a single photon avalanche diode (SPAD) array detector. Furthermore, we generalize our method to other imaging techniques, such as multi-photon excitation fluorescence microscopy and fluoresce lifetime imaging. To enable this latter, we take advantage of the single-photon timing ability of SPAD arrays, accessing additional sample information. Our method outperforms conventional reconstruction techniques and opens new perspectives for exploring the unique spatio-temporal information provided by SPAD array detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.