Abstract
Hyperspectral image super-resolution (HISR) is a technique that can break through the limitation of imaging mechanism to obtain the hyperspectral image (HSI) with high spatial resolution. Although some progress has been achieved by existing methods, most of them directly learn the spatial-spectral joint mapping between the observed images and the target high-resolution HSI (HrHSI), failing to fully reserve the spectral distribution of low-resolution HSI (LrHSI) and the spatial distribution of high-resolution multispectral imagery (HrMSI). To this end, we propose a spatial-spectral-bilateral cycle-diffusion framework (S2CycleDiff) for HISR, which can step-wise generate the HrHSI with high spatial-spectral fidelity by learning the conditional distribution of spatial and spectral super-resolution processes bilaterally. Specifically, a customized conditional cycle-diffusion framework is designed as the backbone to achieve the spatial-spectral-bilateral super-resolution by repeated refinement, wherein the spatial/spectral guided pyramid denoising (SGPD) module seperately takes HrMSI and LrHSI as the guiding factors to achieve the spatial details injection and spectral correction. The outputs of the conditional cycle-diffusion framework are fed into a complementary fusion block to integrate the spatial and spectral details to generate the desired HrHSI. Experiments have been conducted on three widely used datasets to demonstrate the superiority of the proposed method over state-of-the-art HISR methods. The code is available at https://github.com/Jiahuiqu/S2CycleDiff.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.