Abstract

To investigate the centrifugal change in somatosensory information processing caused by contraction of the contralateral homologous muscle, we recorded the somatosensory-evoked potentials (SEPs) during the preparatory period of a self-initiated plantar flexion. The SEPs following stimulation of the right tibial nerve at the popliteal fossa were recorded in nine healthy subjects. Self-initiated plantar flexion of the left ankle was performed once every 5 to 7 s. The electrical stimulation was delivered continuously, and the subjects were instructed to concentrate on the movement and not to pay attention to the electrical stimulation. Based on the components of movement-related cortical potential, Bereitschaftspotential (BP) and Negative slope (NS), the preparatory period was divided into four sub-periods (NS, BP-1, BP-2, and Pre-BP). To obtain pre-movement SEPs, the signals following stimulation in each sub-period were averaged. SEPs were attenuated in the preparatory period, especially in the NS sub-period. The amplitude of N40 component was significantly attenuated compared with that in the stationary state and other sub-periods. The amplitude of P53 and N70 was smaller in the NS sub-period than other pre-movement sub-periods. Since there was no centripetal effect on SEPs in the preparatory period, these findings suggested that the activity of motor-related areas modulated the somatosensory information from the contralateral non-movement limb (centrifugal gating). It was assumed that an inhibition on the somatosensory inputs from contralateral limb was caused by the projection via either the corpus callosum or ipsilateral cortico-cortical projections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.