Abstract
BackgroundPsychotic disorders are associated with serious deterioration in functioning even before the first psychotic episode. Also on clinical high risk (CHR) states of developing a first psychotic episode, several studies reported a decreased global functioning. In a considerable proportion of CHR individuals, functional deterioration remains even after (transient) remission of symptomatic risk indicators. Furthermore, deficits in functioning cause immense costs for the health care system and are often more debilitating for individuals than positive symptoms. However in the past, CHR research has mostly focused on clinical outcomes like transition. Prediction of functioning in CHR populations has received less attention. Therefore, the current study aims at predicting functioning in CHR individuals at a single subject level applying multi pattern recognition to clinical data. Patients with a first depressive episode who frequently have persistent functional deficits comparable to patients in the CHR state were investigated in addition.MethodsPRONIA (‘Personalized Prognostic Tools for Early Psychosis Management’) is a prospective collaboration project funded by the European Union under the 7th Framework Programme (grant agreement n°602152). Considering a broad set of variables (MRI, clinical data, neurocognition, genomics and other blood derived parameters) as well as advanced statistical methods, PRONIA aims at developing an innovative multivariate prognostic tool enabling an individualized prediction of illness trajectories and outcome. 11 university centers in five European countries and in Australia (Munich, Basel, Birmingham, Cologne, Düsseldorf, Münster, Melbourne, Milan, Udine, Bari, Turku) participate in the evaluation of three clinical groups (subjects clinically at high risk of developing a psychosis [CHR], patients with a recent onset psychosis [ROP] and patients with a recent onset depression [ROD]) as well as healthy controls.In the current study, we analysed data of 114 CHR and 106 ROD patients. Functioning was measured by the ‘Global Functioning: Social and Role’ Scales (GF S/R). In a repeated, nested cross validation framework we trained a l1-regularized SVM to predict good versus bad outcome. Multivariate pattern recognition analysis allowed to identify most predictive variables from a multitude of clinical, environmental as well as sociodemographic potential predictors assessed in PRONIA.ResultsBased on the 5 to 20 identified most predictive features, prediction models revealed a balanced accuracy (BAC) up to 77/72 for social functioning in CHR/ROD patients and up to 73/69 for role functioning. These models showed satisfying performance of BACs up to 69/63 for social functioning and 67/60 for role functioning in an independent test sample. As expected, prior functioning levels were identified as main predictive factor but also distinct protective and risk factors were selected into the prediction models.DiscussionResults suggest that especially prediction of the multi-faceted construct of role functioning could benefit from inclusion of a rich set of clinical variables.To the best of our knowledge this is the first study that has validated clinical prediction models of functioning in an independent test sample. Identification of predictive variables enables a much more efficient prognostic process. Moreover, understanding the mechanisms underlying functional decline and its illness related pattern might enable an improved definition of targets for intervention. Future research should aim at further maximisation of prediction accuracy and cross-centre generalisation capacity. In addition, other functioning outcomes as well as clinical outcomes need to be focused on.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.