Abstract

S100B protein is found in brain, has been used as a marker for brain injury and is neurotrophic. Using a well-characterized in vitro model of brain cell trauma, we have previously shown that strain injury causes S100B release from neonatal rat neuronal plus glial cultures and that exogenous S100B reduces delayed post-traumatic neuronal damage even when given at 6 or 24 h post-trauma. The purpose of the current studies was to measure post-traumatic S100B release by specific brain cell types and to examine the effect of an antibody to S100 on post-traumatic delayed (48 h) neuronal injury and the protective effect of exogenous S100B. Neonatal rat cortical cells grown on a deformable elastic membrane were subjected to a strain (stretch) injury produced by a 50 ms displacement of the membrane. S100B was measured with an ELISA kit. Trauma released S100B from pure cultures of astrocytes, microglia, and neurons. Anti-S100 reduced released S100B to below detectable levels, increased delayed neuronal injury in traumatized cells and negated the protective effect of exogenous S100B on injured cells. Heat denatured anti-S100 did not exacerbate injury. These studies provide further evidence for a protective role for S100B following neuronal trauma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.