Abstract

Myelodysplastic syndromes (MDS) are characterized by dysplastic and ineffective hematopoiesis that can result from aberrant expansion and activation of myeloid-derived suppressor cells (MDSCs) within the bone marrow (BM) niche. MDSCs produce S100A9, which mediates premature death of hematopoietic stem and progenitor cells (HSPCs). The PD-1/PD-L1 immune checkpoint impairs immune responses by inducing T-cell exhaustion and apoptosis, but its role in MDS is uncharacterized. Here we report an increased expression of PD-1 on HSPCs and PD-L1 on MDSCs in MDS versus healthy donors, and that this checkpoint is also activated in S100A9 transgenic (S100A9Tg) mice, and by treatment of BM mononuclear cells (BM-MNC) with S100A9. Further, MDS BM-MNC treated with recombinant PD-L1 underwent cell death, suggesting that the PD-1/PD-L1 interaction contributes to HSPC death in MDS. In accordance with this notion, PD-1/PD-L1 blockade restores effective hematopoiesis and improves colony-forming capacity in BM-MNC from MDS patients. Similar findings were observed in aged S100A9Tg mice. Finally, we demonstrate that c-Myc is required for S100A9-induced upregulation of PD-1/PD-L1, and that treatment of MDS HSPCs with anti-PD-1 antibody suppresses the expression of Myc target genes and increases the expression of hematopoietic pathway genes. We conclude anti-PD-1/anti-PD-L1 blocking strategies offer therapeutic promise in MDS in restoring effective hematopoiesis.

Highlights

  • Supplementary information The online version of this article contains supplementary material, which is available to authorized users.Myelodysplastic syndromes (MDS) are age-dependent hematopoietic stem cell malignancies characterized by dysplastic and ineffective hematopoiesis that result from abnormal and repressed bone marrow (BM) maturation [1,2,3]

  • Our recent investigations have shown that a chronic inflammatory response, coupled with expansion of hematopoietic-inhibitory myeloid-derived suppressor cells (MDSCs), directs hematopoietic stem and progenitor cells (HSPCs) injury and clonal selection in MDS [9, 10, 27]

  • Within the BM niche, MDSCs serve as a paracrine source of the alarmin S100A9, which activates and expands MDSCs, and is sufficient to provoke cell death of HSPCs to drive ineffective hematopoiesis [9, 10]

Read more

Summary

Introduction

Myelodysplastic syndromes (MDS) are age-dependent hematopoietic stem cell malignancies characterized by dysplastic and ineffective hematopoiesis that result from abnormal and repressed bone marrow (BM) maturation [1,2,3]. Chronic inflammation coupled with senescence-dependent changes in both hematopoietic stem and progenitor cells (HSPCs) and the BM microenvironment are hallmarks of MDS pathogenesis [4,5,6]. Hematopoietic-inhibitory, myeloid-derived suppressor cells (MDSCs) are aberrantly expanded within the BM and are a paracrine source of S100A9, a proinflammatory protein and a damage-associated molecular pattern [9]. S100A9 induces expansion and activation of MDSCs, triggers cell death of HSPCs and myeloid and erythroid progenitors, and contributes to ineffective hematopoiesis [9, 10].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call