Abstract
The nuclear factor-kappaB (NF-kappaB) signaling pathway has been recently shown to participate in inflammation-induced cancer progression. Here, we describe a detailed analysis of the NF-kappaB-dependent gene regulatory network in the well-established Mdr2 knockout mouse model of inflammation-associated liver carcinogenesis. Expression profiling of NF-kappaB-deficient and NF-kappaB-proficient hepatocellular carcinoma (HCC) revealed a comprehensive list of known and novel putative NF-kappaB target genes, including S100a8 and S100a9. We detected increased co-expression of S100A8 and S100A9 proteins in mouse HCC cells, in human HCC tissue, and in the HCC cell line Hep3B on ectopic RelA expression. Finally, we found a synergistic function for S100A8 and S100A9 in Hep3B cells resulting in a significant induction of reactive oxygen species (ROS), accompanied by enhanced cell survival. We identified S100A8 and S100A9 as novel NF-kappaB target genes in HCC cells during inflammation-associated liver carcinogenesis and provide experimental evidence that increased co-expression of both proteins supports malignant progression by activation of ROS-dependent signaling pathways and protection from cell death.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.