Abstract
Metastasis is the leading cause of cancer-related death and directly associates with cancer progression, resistance to anticancer therapy, and poor patient survival. Current efforts focusing on the underlying molecular mechanisms of cancer metastasis attract a special attention to cancer researchers. The epithelial-mesenchymal transition is a complex of molecular program during embryogenesis, inflammation, tissue fibrosis, and cancer progression and metastasis. S100A4, an important member of S100 family proteins, functions to increase the tumor progression and metastasis. The molecular mechanisms of S100A4 involving in the progression and metastasis are diverse in various malignant tumors. Detection of S100A4 expression becomes a promising candidate biomarker in cancer early diagnosis and prediction of cancer metastasis and therefore, S100A4 may be a therapeutic target. This review summarized up to date advancement on the role of S100A4 in human cancer development, progression, and metastasis and the underlying molecular events and then strategies to target S100A4 expression experimentally.
Highlights
Cancer is a significant worldwide health problem in both economically developing and developed countries [1]
S100A4 is one of the numerous specific metastasis-related proteins [3], which was synthesized as a 9,000 molecular weight acidic polypeptide (p9ka/S100A4) by the elongated myoepithelial-like cells in a rat mammary tumor cell line culture [4]
The p9Ka gene encoded a protein of molecular weight at least 9,000 that showed greater than 40% homology to rat or bovine S-100 protein and over 30% homology to bovine intestinal calcium-binding protein, indicating that p9Ka may belong to a family of calciumwww.impactjournals.com/oncotarget binding proteins [6]
Summary
Cancer is a significant worldwide health problem in both economically developing and developed countries [1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.