Abstract
Cardiac tissue replacement therapy, although a promising novel approach for the potential treatment of heart failure, still suffers from insufficient contractile support to the failing myocardium. Here, we explore a strategy to improve contractile properties of engineered heart tissue (EHT) by S100A1 gene transfer. EHTs were generated from neonatal rat cardiomyocytes and transfected (MOI 10 PFU) with the S100A1 adenovirus (AdvS100A1, n = 25) while an adenovirus devoid of the S100A1 cDNA served as a control (AdvGFP, n = 30). Contractile properties of transfected EHTs were measured 7 days following gene transfer. Western blot analysis confirmed a 8.7 +/- 3.6-fold S100A1 protein overexpression in AdvS100A1-transfected EHTs (n = 4; P < 0.01) that increased maximal isometric force (mN; AdvGFP 0.175 +/- 0.03 vs. AdvS100A1 0.47 +/- 0.06; P < 0.05) at 0.4 mmol/L extracellular calcium concentration [Ca(2+)](e). In addition, S100A1 overexpression enhanced both maximal Ca(2+)-stimulated force generation (+81%; P < 0.05) and Ca(2+)-sensitivity of EHTs (EC50% [Ca(2+)](e) mM; AdvGFP 0.33 +/- 0.04 vs. AdvS100A1 0.21 +/- 0.0022; P < 0.05). The S100A1-mediated gain in basal graft contractility was preserved throughout a series of isoproterenol interventions (10(-9) to 10(-6) M). Physiological properties of EHTs resembling intact heart preparations were preserved. S100A1 gene transfer in EHT is feasible and augments contractile performance, while characteristic physiological features of EHT remain unchanged. Thus, specific genetic manipulation of tissue constructs prior to implantation should be part of an improved tissue replacement strategy in heart failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.