Abstract

S100beta is a soluble protein released by glial cells mainly under the activation of the 5-HT1A receptor. It has been reported as a neuro-trophic and -tropic factor that promotes neurite maturation and outgrowth during development. This protein also plays a role in axonal stability and the plasticity underlying long-term potentiation in adult brains. The ability of S100beta to rapidly regulate neuronal morphology raises the interesting point of whether there are daily rhythm or gender differences in S100beta level in the brain. To answer this question, the S100beta expression in adult female and male rats, as well as in adult female CD-21 and S100beta -/- female mice, were investigated. Scintillation counting and morphometric analysis of the immunoreactivity of S100beta, showed rhythmic daily expression. The female and male rats showed opposite cycles. Females presented the highest value at the beginning of the rest phase (5:00 h), while in males the maximum value appeared in the beginning of the motor activity period (21:00 h). These results confirm previous S100beta evaluations in human serum and cerebrospinal fluid reporting the protein's function as a biomarker for brain damage (Gazzolo et al. in Clin Chem 49:967-970, 2003; Clin Chim Acta 330:131-133, 2003; Pediatr Res 58:1170-1174, 2005), similar behavior was also observed for GFAP in relation to Alzheimer Disease (Fukuyama et al. in Eur Neurol 46:35-38, 2001). The data should be taken into account when considering S100beta as a biomarker of health condition. In addition, the results raise questions on which structure or condition imposes these rhythms as well as on the physiological meaning of the observed gender differences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.