Abstract

We recently reported that glutamate carboxypeptidase II (GCPII) has a new physiological function degrading amyloid-β (Aβ), distinct from its own hydrolysis activity in N-acetyl-L-aspartyl-L-glutamate (NAAG); however, its underlying mechanism remains undiscovered. Using site-directed mutagenesis and S1 pocket-specific chemical inhibitor (compound 2), which was developed for the present study based on in sillico computational modeling, we discovered that the Aβ degradation occurs through S1 pocket but not through S1′ pocket responsible for NAAG hydrolysis. Treatment with compound 2 prevented GCPII from Aβ degradation without any impairment in NAAG hydrolysis. Likewise, 2-PMPA (specific GCPII inhibitor developed targeting S1′ pocket) completely blocked the NAAG hydrolysis without any effect on Aβ degradation. Pre-incubation with NAAG and Aβ did not affect Aβ degradation and NAAG hydrolysis, respectively. These data suggest that GCPII has two distinctive binding sites for two different substrates and that Aβ degradation occurs through binding to S1 pocket of GCPII.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.