Abstract
We examine the zero-range limit of the finite square well in arbitrary dimensions through a systematic analysis of the reduced, s-wave, two-body, time-independent Schrödinger equation. A natural consequence of our investigation is the requirement of a delta function multiplied by a regularization operator to model the zero-range limit of the finite-square well when the dimensionality is greater than one. The case of two dimensions turns out to be surprisingly subtle, and needs to be treated separately from all other dimensions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.