Abstract
The cholinergic system plays a central role in regulating critical gastrointestinal functions, including motility, secretion, barrier and immune function. In rodent models of acute, non-infectious gastrointestinal injury, the cholinergic system functions to inhibit inflammation; however, during inflammation local expression and regulation of the cholinergic system is not well known, particularly during infectious enteritis. The objective of this study was to determine the intrinsic expression of the enteric cholinergic system in pig ileum following an acute challenge with Salmonella enterica serovar Typhimurium DT104 (S. Typhimurium). At 2 d post-challenge, a three-fold reduction in ileal acetylcholine (ACh) levels was observed in challenged animals, compared with controls. Ileal acetylcholinesterase (AChE) activity was decreased (by four-fold) while choline acetyltransferase (ChAT) expression was increased in both the ileum and mesenteric lymph nodes. Elevated ChAT found to localize preferentially to mucosa overlying lymphoid follicles of the Peyers patch in challenged pigs, with more intense labeling for ChAT in S. Typhimurium challenged pigs compared to controls. Ileal mRNA gene expression of muscarinic receptor 1 and 3 was also increased in challenged pigs, while muscarinic receptor 2 and the nicotinic receptor alpha 7 subunit gene expression were unaffected. A positive correlation was observed between ChAT protein expression in the ileum, rectal temperature, and histopathological severity in challenged animals. These data show that inflammation from S. Typhimurium challenge alters enteric cholinergic expression by down-regulating acetylcholine concentration and acetylcholine degrading enzymes while increasing acetylcholine synthesis proteins and receptors. Given the known anti-inflammatory role of the cholinergic system, the divergent expression of cholinergic genes may represent an attempt to limit tissue damage by preserving cholinergic signaling in the face of low ligand availability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.