Abstract

The repair of DNA damage is fundamental to normal cell development and replication. Hydrogen sulfide (H2S) is a novel gasotransmitter that has been reported to protect cellular aging. Here, we show that H2S attenuates DNA damage in human endothelial cells and fibroblasts by S-sulfhydrating MEK1 at cysteine 341, which leads to PARP-1 activation. H2S-induced MEK1 S-sulfhydration facilitates the translocation of phosphorylated ERK1/2 into nucleus, where it activates PARP-1 through direct interaction. Mutation of MEK1 cysteine 341 inhibits ERK phosphorylation and PARP-1 activation. In the presence of H2S, activated PARP-1 recruits XRCC1 and DNA ligase III to DNA breaks to mediate DNA damage repair, and cells are protected from senescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.