Abstract

A Taxus canadensis phenylalanine aminomutase (TcPAM) catalyzes the isomerization of (S)-α- to (R)-β-phenylalanine, making (E)-cinnamate (~10%) as a byproduct at steady state. A currently accepted mechanism for TcPAM suggests that the amino group is transferred from the substrate to a prosthetic group comprised of an amino acid triad in the active site and then principally rebinds to the carbon skeleton of the cinnamate intermediate to complete the α-β isomerization. In contrast, when (S)-styryl-α-alanine is used as a substrate, TcPAM produces (2E,4E)-styrylacrylate as the major product (>99%) and (R)-styryl-β-alanine (<1%). Comparison of the rates of conversion of the natural substrate (S)-α-phenylalanine and (S)-styryl-α-alanine to their corresponding products (k(cat) values of 0.053 ± 0.001 and 0.082 ± 0.002 s(-1), respectively) catalyzed by TcPAM suggests that the amino group resides in the active site longer than styrylacrylate. To demonstrate this principle, inhibition constants (K(I)) for selected acrylates ranging from 0.6 to 106 μM were obtained, and each had a lower K(I) compared to that of (2E,4E)-styrylacrylate (337 ± 12 μM). Evaluation of the inhibition constants and the rates at which both the α/β-amino acids (between 7 and 80% yield) and styrylacrylate were made from a corresponding arylacrylate and styryl-α-alanine, respectively, by TcPAM catalysis revealed that the reaction progress was largely dependent on the K(I) of the acrylate. Bicyclic amino donor substrates also transferred their amino groups to an arylacrylate, demonstrating for the first time that ring-fused amino acids are productive substrates in the TcPAM-catalyzed reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.