Abstract
In this study, a PDB (Protein Data Bank) analysis and theoretical calculations (PBE0-D3/def2-TZVP level of theory) were combined to analyze the impact of S⋅⋅⋅Sn tetrel-bonding interactions in the activation mechanism of peroxisome proliferator-activated receptors (PPARs) by two organotin derivatives, triphenyltin (TPT) and tributyltin (TBT). The presence of a covalently bonded CYS285 to the organotin molecule was found to be key to enhance the σ-hole-donor ability of the tin atom, thus strengthening the tetrel-bonding interaction with a sulfur atom belonging to a vicinal methionine residue (MET364).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.