Abstract

Fullerenes have been long investigated for application as singlet oxygen sources. Even though they possess high photosensitizing efficiency, their practical use is still limited, mostly because of insufficient absorption of visible and/or near-infrared light. This limitation can be overcome by introducing organic chromophores that absorb longer-wavelength light, either by covalent attachment to C60 or by its encapsulation in a polymeric matrix. In this work, we investigated the photosensitizing properties of the C60 molecule functionalized with organic units comprising thiophene or selenophene rings. The chemical structures of the synthesized dyads were characterized by nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. The influence of the S/Se atoms and vinyl linkage between the organic unit and C60 on the absorptive and emissive properties of the dyads was investigated and correlated with their photosensitizing activity. For the latter, we used a standard chemical singlet oxygen trap. A selected dyad C60ThSe2 was also applied as a source of singlet oxygen in a model photocatalyzed synthesis of the fine chemical juglone from 1,5-dihydroxynapthalene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.