Abstract

The theory of S-process heavy-element formation is reformulated to allow for competition between beta decay and neutron capture at various nuclei along the path. Solutions to the resulting branching network equations are presented (under the assumption of constant temperature and neutron flux) that do not require steady flow for the neutron current. Using the exponential exposure distribution rho (tau) =G exp(-tau/tau/sub 0/) and recently calculated temperature-dependent beta-decay rates, comparison of several key branches yields the following average conditions for the solar-system S-process environment: Tapprox. =3.1 x 10/sup 8/ K, n/subn/approx. =1.6 x 10/sup 7/ neutrons cm/sup -3/. For tau/sub 0/=0.25 n mb/sup -1/ we find that about 4.8 neutron captures per exposed iron seed are required over a time of the order of a few thousand years for synthesis of the bulk of the solarsystem S-process material, with an average neutron capture time approx.10 years (for sigmaapprox.500 mb). (AIP)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.