Abstract

Cells divide with remarkable fidelity, allowing complex organisms to develop and possess longevity. Checkpoint controls contribute by ensuring that genome duplication and segregation occur without error so that genomic instability, associated with developmental abnormalities and a hallmark of most human cancers, is avoided. S-phase checkpoints prevent cell division while DNA is replicating. Budding yeast Mec1p and Rad53p, homologues of human checkpoint kinases ATM/ATR and Chk2, are needed for this control system. How Mec1p and Rad53p prevent mitosis in S phase is not known. Here we provide evidence that budding yeasts avoid mitosis during S phase by regulating the anaphase-promoting complex (APC) specificity factor Cdc20p: Mec1p and Rad53p repress the accumulation of Cdc20p in S phase. Because precocious Cdc20p accumulation causes anaphase onset and aneuploidy, Cdc20p concentrations must be precisely regulated during each and every cell cycle. Catastrophic mitosis induced by Cdc20p in S phase occurs even in the absence of core APC components. Thus, Cdc20p can function independently of the APC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call