Abstract

Mobile location-based services (MLBS) are attracting attention for their potential public and personal use for a variety of applications such as location-based advertisement, smart shopping, smart cities, health applications, emergency response, and even gaming. Many of these applications rely on Inertial Navigation Systems (INS) due to the degraded GNSS services indoors. INS-based MLBS using smartphones is hindered by the quality of the MEMS sensors provided in smartphones which suffer from high noise and errors resulting in high drift in the navigation solution rapidly. Pedestrian dead reckoning (PDR) is an INS-based navigation technique that exploits human motion to reduce navigation solution errors, but the errors cannot be eliminated without aid from other techniques. The purpose of this study is to enhance and extend the short-term reliability of PDR systems for smartphones as a standalone system through an enhanced step detection algorithm, a periodic attitude correction technique, and a novel PCA-based motion direction estimation technique. Testing shows that the developed system (S-PDR) provides a reliable short-term navigation solution with a final positioning error that is up to 6 m after 3 min runtime. These results were compared to a PDR solution using an Xsens IMU which is known to be a high grade MEMS IMU and was found to be worse than S-PDR. The findings show that S-PDR can be used to aid GNSS in challenging environments and can be a viable option for short-term indoor navigation until aiding is provided by alternative means. Furthermore, the extended reliable solution of S-PDR can help reduce the operational complexity of aiding navigation systems such as RF-based indoor navigation and magnetic map matching as it reduces the frequency by which these aiding techniques are required and applied.

Highlights

  • Navigation is a service that we rely on during our daily activities and is defined as the task of successfully providing directions from a starting point to a destination

  • These results were compared to a Pedestrian dead reckoning (PDR) solution using an Xsens inertial measurements unit (IMU) which is known to be a high grade mechanical systems (MEMS) IMU and was found to be worse than S-PDR

  • The findings show that S-PDR can be used to aid Global navigation satellite system (GNSS) in challenging environments and can be a viable option for short-term indoor navigation until aiding is provided by alternative means

Read more

Summary

Introduction

Navigation is a service that we rely on during our daily activities and is defined as the task of successfully providing directions from a starting point to a destination. The goal of any navigation system is finding the time-varying navigation states: position, velocity, and attitude of a moving platform with high precision [1]. Existing navigation technologies and techniques can be categorized into absolute measurements ( known as reference-based) systems, relative measurements ( known as Dead Reckoning) systems, or a combination of both [2]. Global navigation satellite system (GNSS) is one of the main technologies used for navigation with the global positioning system (GPS) being the prevalent system. GNSS is a reference-based system that uses a set of satellites for the purpose of positioning and attitude estimation. GNSS is always expanding and improving with the presence of many constellations such as GPS, BEIDOU, GALILEO, and QZSS, and the increasing number of satellites per constellation providing wide coverage, GNSS navigation is not always accurate and stable, and in many cases it can fail to provide a positional solution [3]

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call