Abstract
BCNU (1,3-bis[2-chloroethyl]-1-nitrosourea) is the mainstay in glioblastoma multiform chemotherapy with only minimal effects. BCNU may kill tumor cells via carbamoylating cytotoxicity, which irreversibly inhibits glutathione reductase with resultant accumulation of oxidized form of glutathione causing oxidative stress. S-nitrosoglutathione (GSNO) is a product of glutathione and nitric oxide interaction. We report that GSNO formation may underlie carbamoylating chemoresistance mediated by activation of inducible nitric oxide synthase. Transactivation of hypoxia-inducible factor-1 (HIF-1)-responsive genes reduces oxidative stress caused by glutathione depletion. We also noted that preconditioning of C6 glioma cells to induce HIF-1 and its downstream genes confers chemoresistance against carbamoylating cytotoxicity of BCNU.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.