Abstract

Antimicrobial-lock therapy is an economically viable strategy to prevent/reduce the catheter-related bloodstream infections (CRBSI) that are associated with central venous catheters (CVCs). Herein, we report the synthesis and characterization of the S-nitroso-N-acetyl-l-cysteine ethyl ester (SNACET), a nitric oxide (NO)-releasing molecule, and for the first time its application as a catheter lock solution to combat issues of bacterial infection associated with indwelling catheters. Nitric oxide is an endogenous gasotransmitter that exhibits a wide range of biological properties, including broad-spectrum antimicrobial activity. The storage stability of the SNACET and the NO release behavior of the prepared lock solution were analyzed. SNACET lock solutions with varying concentrations exhibited tuneable NO release at physiological levels for >18 h, as measured using chemiluminescence. The SNACET lock solutions were examined for their efficacy in reducing microbial adhesion after 18 h of exposure toStaphylococcus aureus (Gram-positive bacteria) andEscherichia coli (Gram-negative bacteria). SNACET lock solutions with 50 and 75 mM concentrations were found to reduce >99% (ca. 3-log) of the adhered S. aureus and E. coli adhesion to the catheter surface after 18 h. The SNACET lock solutions were evaluated in a more challenging in vitro model to evaluate the efficacy against an established microbial infection on catheter surfaces using the same bacteria strains. A >90% reduction in viable bacteria on the catheter surfaces was observed after instilling the 75 mM SNACET lock solution within the lumen of the infected catheter for only 2 h. These findings propound that SNACET lock solution is a promising biocidal agent and demonstrate the initiation of a new platform technology for NO-releasing lock solution therapy for the inhibition and treatment of catheter-related infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.