Abstract
S and N-doped carbon dots (S-CDs and N-CDs) and their cisplatin (cis-Pt) derivatives.(S-CDs@cis-Pt and N-CDs@cis-Pt) were tested on two ovarian cancer cell lines: A2780 and A2780 cells resistant to cis-Pt (A2780R). Several spectroscopic techniques were employed to check S-CDs@cis-Pt and N-CDs@cis-Pt: solid- and solution-state nuclear magnetic resonance, matrix-assisted laser desorption, ionization time-of-flight mass spectrometry, and X-ray photoelectron spectroscopy. In addition, synchrotron-based Fourier Transformed Infrared spectro-microscopy was used to evaluate the biochemical changes in cells after treatment with cis-Pt, S-CDs, N-CDs, or S-CDs@cis-Pt and N-CDs@cis-Pt, respectively. Computational chemistry was applied to establish the model for the most stable bond between S-CDs and N-CDs and cis-Pt. The results revealed the successful modification of S-CDs and N-CDs with cis-Pt and the formation of a stable composite system that can be used for drug delivery to cancer cells and likewise to overcome acquired cis-Pt resistance. Nanoparticle treatment of A2780 and A2780R cells led to the changes in their structure of lipids, proteins, and nucleic acids depending on the treatment. The results showed the S-CDs@cis-Pt and N-CDs@cis-Pt might be used in the combination with cis-Pt to treat the adenocarcinoma, thus having a potential to be further developed as drug delivery systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.