Abstract

1. 2-(Allylthio)pyrazine (2-AP) has been demonstrated to protect the liver against toxicants by inhibiting CYP2E1 activity. Since 2-mercaptopyrazine (2-MP) is presumed to be a metabolite of 2-AP, the experiments were performed to determine whether rat liver microsomal and or cytosolic preparations could catalyse the S-methylation of 2-MP. 2. It was found that both rat liver microsomes and cytosol could catalyse the S-methylation of 2-MP. The microsomal activity displayed biphasic substrate kinetics, with apparent Km = 8.44±2.68 and 417±74 μM for the high- and low-affinity activities respectively. The high-affinity activity had an apparent Km for S-adenosyl-L-methionine (Ado-Met) of 3.52 μM. The cytosolic activity also displayed biphasic substrate kinetics, with apparent Km of 3.26±p0.62 and 91.6±23.1 μM for the high- and low-affinity activities respectively. 3. The microsomal S-methylation of 2-MP was inhibited by 2,3-dichloro-α-methylbenzylamine (DCMB), SKF-525A and benzylamine, known microsomal thiol methyltransferase (TMT) inhibitors, whereas cytosolic activity was inhibited by anisic acid and 3- chlorobenzoate, which also inhibit cytosolic thiopurine methyltransferase (TPMT). Both activities were inhibited by S-adenosyl-L-homocysteine (Met-Hcy). 4. These results suggest that both TMT and TPMT may be involved in the in vivo methylation of 2-MP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.