Abstract

Erypoegin K, an isoflavone isolated from the stem bark of Erythrina poeppigiana, has a single chiral carbon in its structure and exists naturally as a racemic mixture. Our previous study showed (S)-erypoegin K selectively exhibits potent anti-proliferative and apoptosis-inducing activity against human leukemia HL-60 cells. To identify the target molecule of (S)-erypoegin K, we employed the human cancer cell panel analysis (termed JFCR39) coupled with a drug sensitivity database of pharmacologically well-characterized drugs for comparison using the COMPARE algorithm. (S)-erypoegin K exhibited a similar profile to that of etoposide, suggesting the molecular target for erypoegin K may be topoisomerase II (Topo II). Subsequent experiments using purified human Topo IIα established that the (S)-isomer selectively stabilizes the cleavage complex composed of double-stranded plasmid DNA and the enzyme. Moreover, (S)-erypoegin K inhibited decatenation of kinetoplast DNA. Molecular docking studies clearly indicated specific binding of the (S)-isomer to the active site of Topo IIα involving hydrogen bonds that help stabilize the cleavage complex. (S)-erypoegin K displayed potent cytotoxic activity against two human gastric cancer cells GCIY and MKN-1 with IC50 values of 0.270 and 0.327 μM, respectively, and induced enzyme activities of caspase 3 and 9. Cell cycle analysis showed marked cell cycle arrest at G2 phase in both cell lines. (S)-erypoegin K also displayed significant antitumor activity toward GCIY xenografted mice. The present study suggests (S)-erypoegin K acts as a Topo II inhibitor to block the G2/M transition of cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call