Abstract

Electrode erosion through continual long-timescale operation (60 min) of identical twin surface dielectric barrier discharges (twin SDBDs) powered either by a microsecond (μs) or a nanosecond timescale (ns) voltage source is investigated. The twin SDBDs are characterized using current–voltage measurements, optical emission spectroscopy, and phase integrated ICCD imaging. The temporally and spatially averaged gas temperature, consumed electric power, and effective discharge parameters (reduced electric field, and electron density) are measured. The μs twin SDBD is shown to operate in a filamentary mode while the ns twin SDBD is shown to operate in a more homogeneous mode (i.e. non filamentary). Despite a similarity of the effective discharge parameters in both the μs and ns twin SDBD, erosion of the nickel coated electrodes caused by operation of the twin SDBD differs strongly. Only the formation of a moderate number of nickel oxide species is observed on the surface of the ns twin SDBD electrodes. In contrast, the nickel coated electrodes are locally melted and considerably higher densities of oxides are observed around the eroded areas of the μs twin SDBD, due to the filamentary nature of the discharge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call