Abstract

In the current work, heteroatom-doped graphene materials containing different atomic ratios of nitrogen and sulphur were employed as electrocatalysts for the oxygen reduction reaction (ORR) in acidic and alkaline media. To this end, the hydrothermal route and different chemical reducing agents were employed to synthesize the catalytic materials. The physicochemical characterization of the catalysts was performed by several techniques, such as X-ray diffraction, Raman spectroscopy and elemental analysis; meanwhile, the electrochemical performance of the materials toward the ORR was analyzed by linear sweep voltammetry (LSV), rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) techniques. The main results indicate that the ORR using heteroatom-doped graphene is a direct four-electron pathway, for which the catalytic activity is higher in alkaline than in acidic media. Indeed, a change of the reaction mechanism was observed with the insertion of N into the graphenic network, by the rate determining step changes from the first electrochemical step (formation of adsorbed OOH) on glassy carbon to the removal of adsorbed O (Oad) from the N-graphene surface. Moreover, the addition of sulphur atoms into the N-graphene structure increases the catalytic activity toward the ORR, as the desorption of Oad is accelerated.

Highlights

  • IntroductionFuel cells (FCs) are promising electrochemical energy converters for a diversity of applications

  • Fuel cells (FCs) are promising electrochemical energy converters for a diversity of applications.They have the potential to provide environmentally friendly energy conversion with a high efficiency and power density [1,2]

  • The latter is caused by the growth of oxygen functional groups (OFGs) between the graphitic layers, which caused an expansion of the C–C interplanar spacing from 0.34 to 0.84 nm, and a weakening of the respective chemical bonds of graphite [8,13]

Read more

Summary

Introduction

Fuel cells (FCs) are promising electrochemical energy converters for a diversity of applications. They have the potential to provide environmentally friendly energy conversion with a high efficiency and power density [1,2]. Developing low-cost electrocatalysts with a high performance toward the ORR is of paramount importance to support the industrial operation of FCs [3,4]. In this context, graphene-based materials appear as a promising means to fulfil the previously mentioned requirements [1]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.