Abstract

Recent experimental animal studies have implicated brain polyamines as having roles in both brain development and human brain neurodegenerative conditions. In order to provide baseline information, in normal human brain, on one of the key polyamine synthesising enzymes, S-adenosylmethionine decarboxylase (SAMDC), we examined the sensitivity of this enzyme to various cofactors/inhibitors, its regional distribution, and influence of aging in neurologically normal autopsied human brain. SAMDC in normal human brain is similar to that reported in other mammalian cells with regard to substrate affinity ( K m = 39 μM), marked sensitivity to putrescine activation (+600%), inhibition (methylglyoxalbisguanidine and MDL 73811), and pH optimum (7.2). There was an uneven distribution of enzyme activity in human brain, and of the 12 brain regions examined, the highest activity was observed in occipital, parietal, frontal and temporal cortices (36–58 pmol/h/mg protein); intermediate activity in cerebellar and insular cortex, pulvinar thalamus, caudate and putamen (12–27 pmol/h/mg protein); and lowest activity in medial-dorsal thalamus, lateral globus pallidus and white matter (< 11 pmol/h/mg protein). The influence of aging (1 day to 103 years) on SAMDC activity in occipital cortex, the region showing the highest activity in human brain ( n = 59) was also determined. Enzyme activity increased by approximately 600% from age 6 months to near maximal levels at age 10 years, then remained generally unchanged up to 103 years. Since SAMDC is a key regulatory enzyme in the synthesis of spermidine and spermine, the marked increase in SAMDC activity in the neonate and the sustained high enzyme levels throughout adulthood, imply a role for these polyamines in both development and mature brain function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.