Abstract

All the available antiherpetic drugs are directed against viral proteins. Their extensive clinical use has led to the emergence of resistant viral strains. There is a need for the treatment of herpes infections due to resistant strains, especially for immunocompromised patients. To design new kinds of drugs, we have developed a strategy to identify cellular targets. Herpes simplex virus type 1 (HSV-1) infection is concomitant to a repression of most host protein synthesis. However, some cellular proteins continue to be efficiently synthesized. We speculated that some of them could determine the outcome of infection. Since two polyamines, spermidine and spermine, are components of the HSV-1 virions, we investigated whether enzymes involved in their synthesis could be required for viral infection. We show that inhibition of S-adenosyl methionine decarboxylase, a key enzyme of the polyamine metabolic pathway, prevents HSV-1 infection. Inhibition of polyamine synthesis prevents infection of culture cells with HSV-1 laboratory strains as well as clinical isolates that are resistant to the conventional antiviral drugs acyclovir and foscarnet. Our data provide the opportunity to develop molecules with a novel mechanism of action for the treatment of herpes infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.