Abstract
S-adenosyl-L-methionine is an endogenous molecule with hepato-protective properties linked to redox regulation and methylation. Here, the potential therapeutic value of SAMe was tested in 17 patients with PBC, a cholestatic disease with autoimmune phenomena targeting small bile ducts. Nine patients responded to SAMe (SAMe responders) with increased serum protein S-glutathionylation. That posttranslational protein modification was associated with reduction of serum anti-mitochondrial autoantibodies (AMA-M2) titers and improvement of liver biochemistry. Clinically, SAMe responders were younger at diagnosis, had longer duration of the disease and lower level of serum S-glutathionylated proteins at entry. SAMe treatment was associated with negative correlation between protein S-glutathionylation and TNFα. Furthermore, AMA-M2 titers correlated positively with INFγ and FGF-19 while negatively with TGFβ. Additionally, cirrhotic PBC livers showed reduced levels of glutathionylated proteins, glutaredoxine-1 (Grx-1) and GSH synthase (GS). The effect of SAMe was also analyzed in vitro. In human cholangiocytes overexpressing miR-506, which induces PBC-like features, SAMe increased total protein S-glutathionylation and the level of γ-glutamylcysteine ligase (GCLC), whereas reduced Grx-1 level. Moreover, SAMe protected primary human cholangiocytes against mitochondrial oxidative stress induced by tBHQ (tert-Butylhydroquinone) via raising the level of Nrf2 and HO-1. Finally, SAMe reduced apoptosis (cleaved-caspase3) and PDC-E2 (antigen responsible of the AMA-M2) induced experimentally by glycochenodeoxycholic acid (GCDC). These data suggest that SAMe may inhibit autoimmune events in patients with PBC via its antioxidant and S-glutathionylation properties. These findings provide new insights into the molecular events promoting progression of PBC and suggest potential therapeutic application of SAMe in PBC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.